Global Regularity and Singularity Development for Wave Maps

نویسنده

  • J. KRIEGER
چکیده

function space requirements: (i) X ⊂ C([0, T ],H n2 + ) ∩ C([0, T ],H n2−1+ ), > 0

منابع مشابه

Regularity of Bounded Tri-Linear Maps and the Fourth Adjoint of a Tri-Derivation

In this Article, we give a simple criterion for the regularity of a tri-linear mapping. We provide if f : X × Y × Z −→ W is a bounded tri-linear mapping and h : W −→ S is a bounded linear mapping, then f is regular if and only if hof is regular. We also shall give some necessary and sufficient conditions such that the fourth adjoint D^∗∗∗∗ of a tri-derivation D is again tri-derivation.

متن کامل

0 M ay 2 00 8 GLOBAL REGULARITY OF WAVE MAPS III . LARGE ENERGY FROM R 1 + 2 TO HYPERBOLIC SPACES

We show that wave maps φ from two-dimensional Minkowski spaceR to hyperbolic spacesH are globally smooth in time if the initial data is smooth, conditionally on some reasonable claims concerning the local theory of such wave maps, as well as the self-similar and travelling (or stationary solutions); we will address these claims in the sequels [60], [61], [62] to this paper. Following recent wor...

متن کامل

m at h . A P ] 8 A ug 2 00 9 GLOBAL REGULARITY OF WAVE MAPS III . LARGE ENERGY FROM R 1 + 2 TO HYPERBOLIC SPACES

We show that wave maps φ from two-dimensional Minkowski spaceR to hyperbolic spacesH are globally smooth in time if the initial data is smooth, conditionally on some reasonable claims concerning the local theory of such wave maps, as well as the self-similar and travelling (or stationary solutions); we will address these claims in the sequels [67], [68], [69], [70] to this paper. Following rece...

متن کامل

Global Regularity of Wave Maps v. Large Data Local Wellposedness and Perturbation Theory in the Energy Class

Using the harmonic map heat flow and the function spaces of Tataru [27] and the author [20], we establish a large data local well-posedness result in the energy class for wave maps from two-dimensional Minkowski space R to hyperbolic spaces H . This is one of the five claims required in [24] to prove global regularity for such wave maps.

متن کامل

Global Regularity of Wave Maps Ii. Small Energy in Two Dimensions

We show that wave maps from Minkowski space R to a sphere Sm−1 are globally smooth if the initial data is smooth and has small norm in the critical Sobolev space Ḣn/2, in all dimensions n ≥ 2. This generalizes the results in the prequel [37] of this paper, which addressed the high-dimensional case n ≥ 5. In particular, in two dimensions we have global regularity whenever the energy is small, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007